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zl0 can easily vary by three orders of magnitude from 
10 -4 degrees to 10 -1 degrees as electron density, 
wavelength and angles vary. For example, 6 differs 
by a factor of 70 when comparing silicon irradiated 
with Mo Ka radiation (6 = 0.158 x 10 -5) to tungsten 
irradiated with C r K a ( 6 = l l . 0 × 1 0 - s ) .  When ~ =  
0, 1/sin 20 varies from 5.75 to 1 as 20 changes from 
10 to 90 ° and when ~ is slightly less than 0 (i.e. grazing 
incidence) the trigonometric term in the expression 
for A0 can be large. For example when 0 - , p =  
1.0 °, 1/tan (0 - ~o) = 57.3. 
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Abstract 

A new approach to Kato's [Acta Cryst. (1980), A36, 
763-769, 770-778] calculations in the Laue case is 
presented, giving a clearer and simpler derivation of 
the mixed terms of the integrated intensities (Bragg- 
and forward-diffracted beams). The results are in 
agreement with calculations by A1 Haddad & Becker 
[Acta Cryst. (1988), A44, 262-270] showing the 
necessity of correcting two errors in the original treat- 
ment of Kato. 

I. Introduction 

The statistical theory of Kato (1980a, b) is an out- 
standing contribution to diffraction theory because it 
spans in principle the whole range of crystal perfec- 
tion, from perfect to ideally imperfect (extinction- 
free) crystals. The 'lattice phase factor' exp [ ig .  u(x, 
y, z)] which characterizes the crystal distortion in the 
wave-optical Taupin-Takagi  equations (Kato, 1976) 
[g is the diffraction vector and u(x, y, z) is the dis- 
placement field] is considered as a random function 
characterized by a static Debye-Waller  factor E and 
a correlation length ~'. In the present state of the 
theory the condition ~-~A, A being the extinction 
length, is assumed. 

E = 0 is the case of secondary extinction, for which 
diffraction from the incident direction (O beam) to 
the Bragg direction and conversely is entirely 
described by intensity-coupling equations (incoher- 
ent multiple scattering). E = 1 is the case of perfect 
crystals, for which the O and G beams are coherent. 
For other values of E(0 < E < 1), the coherent waves 
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are attenuated, even if the crystal is not absorbing, 
because anywhere in the crystal a diffraction event 
may transfer them into incoherent beams named the 
'mixed' components of the O and G beams. There 
are also the purely incoherent components, the only 
ones present if E = 0, which are built by diffraction 
of the incident undiffracted wave into the incoherent 
G beam directly and then distributed between the O 
and G beams. 

In Kato (1980b), the coherent (I~ and I~), the 
purely incoherent (I~ and I~) and the mixed ( I~  and 
Ig)  intensity distributions are calculated as functions 
of the (So, sg) coordinates of Fig. 1, for an incident 
beam limited by an infinitely narrow slit on the front 
face of a parallel-sided crystal in the Laue case. 
Integration of these distributions on the back face of 
the crystal of thickness t gives the following terms 
of the forward and Bragg integrated intensities 
expressed as 

Ro(t) = R~(t)+ R~(t)+ R'~(t) 

Rg(t)= Rg(t )+ Rg(t )+ R~(t) .  

x 

t ~So 

Fig. 1. Illustration of the (So, sg) and (x, t) coordinates. 

x = (So-Sg) sin 0B; t = (s0+ sg) cos 0B. 
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Such calculations are very complicated in the case of 
the mixed terms. A new approach is presented here. 
It is shown in § II that R~(t)  and Rg(t)  are solutions 
of simple transfer equations which are easy to solve 
and give solutions different from those found in Kato 
(1980b). The differences are then shown to be com- 
pletely justified by errors in Kato's  original treatment,  
these errors being pinpointed in § III (more physi- 
cally) and in § IV (more mathematical ly) .  The new 
expressions are thus to be considered as the correct 
ones. They have also been obtained recently by AI 
Haddad  & Becker (1988) (their paper  was published 
just  before the present one was submitted for publica- 
tion). Their  mathematical  t reatment  is similar to that 
of  Kato and is more complicated than the present one. 

We use notations close to those of Kato, but sim- 
plified, because we assume a real structure factor and 
symmetrical  Laue geometry. P.o is the absorpt ion 
coefficient. ~-e (correlation length for the incoherent  
components)  is supposed to be independent  of -r. We 
write 

H = A/(2A sin 20B) 

o .=2r /A  2 

L = g / c o s  0B 

£ = ~/cos 0B 

~e =/ . t0+ (1 -- E2 )g  

Z = E / ( A  cos OB) 

~ = 2 r ¢ / A  2 

M = ( 1 -  E2)L+txo/COS OB 

i f /=  [, + ~-o/cos o~ 

; e =  ~o+'~. 

We shall refer to Kato's  papers  (1980a, b), as Kato I 
and Kato II respectively; for instance, the formulas 
for the coherent  integrated intensities are 

R~(t) = E H [ 2 Z t -  W(2Zt)] exp ( - M t ) f  (1) 
I 

R g ( t ) = E H W ( 2 Z t )  exp ( - M t )  [ (Kato II, 26) 

where W(x)  is the Waller function, defined as 

W(x)  = i duJo(u). 
o 

II. Differential transfer equations for R~'(t) and Rg(t) 
and their solutions 

The intensity-coupling equations (Kato I, 28) contain 
a source term proportional to the intensity of the 
incident undiffracted beam for the purely incoherent  
distributions and source terms proport ional  to the 
coherent distributions l~(so, sg) and I~(so, Sg) for the 
mixed distributions l~'(So, sg) and l'~(So, s~). These 
are thus solutions of 

OI'~/OSo= d'l'~( So, s~,)- I~fl'~( So, Sg) 

+ ( 1 -  E 2 ) g I C g ( s o ,  Sg) 

m ~ m ~ m Jig/Osg = glo (So, Sg) - ~elg (So, sg) 

+ ( 1  - E 2)O.io(So,C Sg). 

(2) 

The boundary  condit ions are 

I~(so, sg) and I~(So, sg)=O 
(3) 

for So=0 and fo r sg - -0 .  

The derivatives in (2) can be expressed as (see Fig. 1) 

aI/aso, ol/Osg = ±sin 0B al /ax  +cos OB M / o r  

The mixed and coherent components  of the integrated 
intensities are introduced by integrating over x, from 
( - t  tan 0B) to (+ t  tan 0B). Taking into account  condi- 
tion (3), we obtain simple transfer equations,  

dR'~/dt  = £R~( t ) -  f4R~( t)+(1 - E2)LR~( t) 
(4) 

dR ~/d t  = f_.R'~( t) - f4R "~( t) + ( 1 - E 2) LR~( t). 

The functions 

S(t) ,  D( t )  = R~( t )  ± R~'(t) 

are the solutions of 

d S / d t + ( I ~ f - [ . ) S ( t ) = ( 1 - E 2 ) L [ R ~ ( t ) +  R~(t)] 

d D / d t  + ( /~/+ [ , )D( t )  = (1 - E2)L[ R~( t ) -  R~( t)] 

which are equal to 0 for t = 0. These solutions are 

S ( t ) , D ( t ) = ( 1 - E 2 ) L i d t  ' exp [-(fiT/q: £ ) ( t -  t ')] 
o 

x [ R~(t ')  + R~(t')]. 

R~g(t) and R~(t) are given in (1). Using the quantities 
ml,2 and n2 defined in (Kato II, 32a, 33a),  

m~,2 = L i dt' 2Zt' exp ( -Mt ' )  
o 

x exp [ - ( M  :~/~)( t - t') ] 

n2 = Li d t 'W(2Zt ' )  exp ( - M t ' )  
o 

x exp [-(f iT/+/~)(  t - t ')], 

we can express the mixed terms, as 

R ~ ( t )  = E ( 1 - E 2 ) H [ ½ ( m l - m 2 ) +  n2] 
(5) 

R~'(t) = E ( 1 -  E 2) H[l(rnl  + m 2 ) -  n2]. 

III. Discussion of  the modifications to Kato's formulas 

These expressions (5) are to be compared with (Kato 
II, 36a, b). The differences are the factor ~ and the 
quantities m 3 and n 3 present in Kato's formulas,  but 
not in the new formulas (5). 

First, it can be shown that the factors 2 in the 
formulas (Kato I, 30) defining o- and ~ have been 
later forgotten in writing (Kato II, 19). The factor -~ 
must therefore be taken out. 

It can also be checked that the other differences 
are cancelled if the correction 

cosh (Lt) instead of [cosh ( L t ) - l ]  (6) 
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is made in (Kato II, 24a) defining the 'propagator '  
Ko(t). The new Ko(t) and the Kg(t) of (Kato II, 24b) 
are solutions of the intensity transfer equations 

dKo/d t  = [,Kg( t ) -  IVIKo( t) 

dKg/  dt = £Ko( t ) - /$7/Kg (t) 

with modified boundary conditions 

- f/~Ko = 1 instead of 0 
for t=0] .£Kg  0 unchanged. 

This means that the process of direct transmission 
(no diffraction event) after the coherent-to-mixed 
incoherent diffraction event is now taken into 
account. This simple process is illustrated by the 
diagrams of Fig. 2, which complement the diagrams 
of Kato (1980b, Fig. 1). 

This discussion justifies the modification (6) to be 
introduced in Kato's calculations in order to obtain 
agreement with the new expressions (5) of the mixed 
terms. 

Finally it can be shown that the error corrected by 
(6) originates in Kato's expressions of the mixed 
distributions (Kato II, 9b and 10a). For this reason, 
we consider in the next section his calculation (Kato, 
1980b, § 2) based on the two-dimensional Laplace 
transformation 

I (p, q ) =  LT[I(so,  Sg)]' 

= ~  dso dsg e x p ( - p s o - q S g ) I ( s o ,  Sg). 
0 0 

IV. Correcting the mixed intensity distributions 

The Laplace transforms of the partial derivatives in 
(2) are 

o.(3 

LT(OI~'/OSo) = pI~'(p, q ) -  [ dsg exp (-qsg)I~'(O, Sg) 
o 

o o  

LT(OI~/OSg) = q lg  (p, q ) -  ~dso exp ( -pso ) lg  (so, 0), 
o 

in which the integrals are here equal to O, because of 

/ / 
(a) (b) 

Fig. 2. The coherent waves which are transformed to incoherent 
beams at point C may then be transmitted directly, giving a 
contribution to (a) the mixed G beam or (b) the mixed O beam. 

condition (3). Then (2) are transformed to 

( P + fie)I'~ - 6I'~ = (1 - E2)oI~(p, q) 

( q + fie ) I ~' - 6.1~' = ( 1 - E 2)crI ~(p, q ), 

o r  

I~' = (1 - E2)tr[A(q + t2~, p+ 12e)Ig 

+ 6.G (p + lZe, q + tZe)Io] 

I g = ( 1  -- E2)o ' [A(p + fie, q +  fie)I~ 

+ 6 .G(p+ tze, q+ Id, e) lg] ,  

with 

-G(p, q ) = ( p q - 6 . 2 ) - l = ( 1 / p q )  ~ (6"2/pq)" 
o 

o o  

-A(p, q ) = p G ( p ,  q ) =  1 / q + ( 1 / q )  Y. (6.2/pq)n. 
1 

These expansions are convenient for calculating the 
inverse transforms of G(p,  q) and A(p,  q): 

o o  

G(so, sg)= Y~[6"(Sosg)l/2]2"/(n!n!) 
o 

= Io[26"(SoSg)l/2] 

A( So, Sg) = ½6(So) + 6.(sol Sg)1/2 
oo  

x Y~[ 6"(SoSg)1/212"-ll[ n !(n - 1 )!] 
1 

= ½6(So) + 6.(So~ sg )1/2 I,[ 26.(SoSg)I/2], 

where I0 and I, are modified Bessel functions. The 
function in the last expression has been omitted in 
Kato's calculations. This omission explains the error 
in the propagator Ko(t) discussed in the preceding 
section. 

The correct formulas for the mixed intensity distri- 
butions are obtained by the substitutions 

( So/ Sg) '/2 I,[ 26.( SoSg ) '/z] 

6 (So) / 26. + ( So/Sg )1/2 I1[ 26.(SoSg ),/2] 

in (Kato II, 9b) 

(s,l So)1/2 I,[26.(SoSg)1/2] 

6 ( Sg) / Z6- + ( Sg/ So)1/2 I,[ Z6.( SoSg ) '/2] 

in (Kato II, 10a). 

V. Concluding remarks 

The corrected forms of the mixed integrated 
intensities differ significantly from Kato's original 
expressions. We need not go into details here, since 
this is discussed in the paper by A1 Haddad & Becker 
(1988), in which plots of integrated intensities as 
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functions of (t /A cos 0B) are given and can be com- 
pared with those in Kato II (Figs. 2 and 3). 

In the Kato and in the AI Haddad & Becker treat- 
ments, the mixed integrated intensities are obtained 
via the intensity distributions l'~(So, sg) and 
Ig(so, sg). This is not the case in our approach based 
on the simple transfer equations and which only 
requires very simple mathematics. 

The statistical diffraction theory will probably be 
developed much further. There are many open ques- 
tions, for instance the relation between the correlation 
lengths r and re. Efforts will be made to overcome 
the limitation r <  A. Such questions have not been 
considered in the present paper which is strictly 

devoted to Kato's equations in the form defined in 
Kato (1980a). 

I am grateful to Professor M. Schlenker for his 
constant support and critical reading of the manu- 
script, and to Dr F. N. Chukhovski i  for a helpful 
discussion. 
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Abstract 

Measurements have been made, at wavelengths in the 
range 0.3-6.2 A, of hhl reflections of SrF2 on the 
single-crystal diffractometer (SXD) at the ISIS 
Spallation Neutron Source. After application of a 
variable-wavelength extinction correction to the 
derived I F,,k,I values, a refinement of the anharmonic- 
ity parameter /3F of the fluorine atoms was carried 
out, yielding a value o f - 4 . 1 9  (30) x 10-19 J ~-3. 

Introduction 

The anharmonic thermal vibrations of the tetrahe- 
drally bound atoms in fluorite structures have been 
widely studied using monochromatic neutron beams 
from reactor sources (Cooper, Rouse & Willis, 1968; 
Cooper & Rouse, 1971; Mair & Barnea, 1971; Mair, 
Barnea, Cooper & Rouse, 1974). The purpose of this 
study was to investigate, as part of the commissioning 
of the single-crystal diffractometer (SXD) at ISIS, a 
well characterized sample of SrF2 using the white- 
beam neutrons from a pulsed source and to 
demonstrate the advantages of a pulsed source for 
high-resolution studies exploiting the high flux of 
shorter-wavelength neutrons. The measurements were 
carried out using a single (20 x 20 mm) scintillator 

* Attached from Department of Physics, New South Wales 
Institute of Technology, Sydney, Australia. 

detector while SXD awaits the completion of a 300 x 
300mm Anger camera position-sensitive detector 
(Forsyth, Lawrence & Wilson, 1988). 

The simplest potential describing the anharmonic 
thermal vibrations in the strontium fluoride structure 
is (Cooper, Rouse & Willis, 1968) 

Vj(r) = Voj-Flotj(x2+y2Wz2)+flj(xjyjzj) (1) 

where j = Sr, F and xj, yj and zj are the coordinates 
of the thermal displacement of the j th  atom. The 
(x} + y] + z]) term is the normal harmonic potential 
with a t related to the mean square displacement of 
atom j and the term in/3j reflects the contribution of 
anharmonicity to the third-order term in the potential. 

Owing to the centrosymmetry at the Sr site,/3st = 0. 
However /3F for the tetrahedrally bonded fluorine 
atoms has an appreciable effect on the observed 
intensities for reflections where the sum of indices 
Ihl+ikl+lll=nn± 1. After Mair & Barnea (1971) we 
can write for the ratio of two structure factors 

IF+l/IF-I= 1-(2bFIbs,) 
.[h2+k2+ 

x (BF/4~ra)3(flF / k r)(lh,k,l,I + Ih2k2GI) 
(2) 

where F ,  are the structure factors for reflections hkl 
with h + Ik + I11 = 4n + 1, bsr and bv are the scattering 
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